
-- 楼兰

Vue3简介
⼀、整体认识Vue3项⽬

1、创建Vue3⼯程
2、主要⼯程结构

⼆、数据双向绑定
1、vue2语法的双向绑定
2、OptionsAPI和CompositionAPI
3、Vue3中的数据双向绑定

3.1 ref定义基础类型响应式数据
3.2 reactive定义对象型响应式数据
3.3 ref对⽐reactive
3.4 标签的ref属性
3.5⾃定义组件的props属性

三、VUE3⽣命周期
四、Vue-Router组件路由机制

1、基础使⽤
2、路由⼯作模式
3、replace属性
4、嵌套路由
5、路由传参

五、Pinia集中式状态存储
1、理解状态
2、创建store
3、使⽤store操作数据
4、storeToRefs声明响应式数据
5、store的混合式写法

六、快速上⼿Element-Plus

Vue3快速上⼿指南

你只要会基础的HTML，JS，CSS，那么就可以上⼿Vue了。如果你会Java，那么上⼿Vue⾮常轻松。如果你会
Vue2，那么上⼿Vue3会更加舒服。

Vue3简介
官⽹地址：https://vuejs.org/ 。中⽂官⽹ https://cn.vuejs.org/

Vue是什么？易学易⽤，性能出⾊，适⽤场景丰富的 Web 前端框架。

Vue2已经于2023年12⽉31⽇停⽌维护。建议升级到Vue.js3.0版本。打包更⼩，内存更少，渲染更快。好消
息是，vue3向下兼容vue2的语法

https://vuejs.org/
https://cn.vuejs.org/

Vue3于2020年9⽉18⽇发布，代号： One Piece 海贼王。 久经磨砺

Vue3新特性：组合式API(重点)，更好的⽀持TypeScript(熟悉)，状态存储框架Pinia(重点)，新组件(了
解)。。。。。详⻅官⽹

⼀、整体认识Vue3项⽬
1、创建Vue3⼯程
前置：安装NodeJS。NodeJS版本18.0以上。

使⽤官⽅脚⼿架创建Vue⼯程[推荐]。

1、所有功能组件都可以后续⼿动添加。

关于TypeScript，在Vue中的TypeScript可以认为是在JS的基础上，增加⾯向对象的能⼒。可以定义接⼝、
类、抽象类等。

2、npm install过程中会去node仓库下载很多依赖库，放到项⽬本地node_modules⽬录。建议将npm源设
定为淘宝提供的国内镜像，可以下载快⼀点。

使⽤官⽅脚⼿架
npm create vue@latest

按照脚⼿架要求选择是否启⽤相关组件
Vue.js - The Progressive JavaScript Framework

✔ 请输⼊项⽬名称： … myVue3
✔ 请输⼊包名称： … myvue3
✔ 是否使⽤ TypeScript 语法？ … 否 / 是 # 选是
✔ 是否启⽤ JSX ⽀持？ … 否 / 是
✔ 是否引⼊ Vue Router 进⾏单⻚⾯应⽤开发？ … 否 / 是
✔ 是否引⼊ Pinia ⽤于状态管理？ … 否 / 是
✔ 是否引⼊ Vitest ⽤于单元测试？ … 否 / 是
✔ 是否要引⼊⼀款端到端（End to End）测试⼯具？ › 不需要
✔ 是否引⼊ ESLint ⽤于代码质量检测？ … 否 / 是 # 选是
✔ 是否引⼊ Prettier ⽤于代码格式化？ … 否 / 是
✔ Add Vue DevTools extension for debugging? (experimental) … 否 / 是

启动项⽬
npm install

npm run dev

VITE v5.1.6 ready in 315 ms

#

➜ Local: http://localhost:5173/
➜ Network: use --host to expose
➜ press h + enter to show help

npm config get registry https://registry.npmmirror.com

补充：vue2时提供了另外⼀个脚⼿架vue-cli，也可以⽤来创建vue3项⽬。但是vue-cli已经处于停⽌维护状态。

另外，官⽅还有其他⼀些集成vue的⽅法，⾃⾏参考。

2、主要⼯程结构
官⽅建议开发IDE： vscode。提供了辅助开发插件 vue-official。在这之前有个插件叫volar，现在已经停⽤

主要代码结构如下图

安装或者升级脚⼿架
npm install -g @vue/cli

查看脚⼿架版本，确保版本在4.5.0以上
vue --version

创建应⽤
vue create vue_test

创建时选择3.x
Choose a version of Vue.js that you want to start the project with (Use arrow keys)

> 3.x

2.x

启动
cd vue_test

npm run serve

典型的Vue项⽬，都是在index.html这⼀个单⻚⾯⾥形成各种交互，这也就是所谓的SPA(Single Page
Application)

Vue3的核⼼是通过createApp函数创建⼀个应⽤实例，在这个实例中构建各种应⽤。(main.ts中)

每个vue⽂件就是⼀个⻚⾯上的组件，组件可以嵌套使⽤。

vue中的组件分为<template>⻚⾯模板，<script>脚本和<style>样式三个部分。Vue2中要求<template>下必
须有⼀个唯⼀的根元素，Vue3中则没有了这个限制。

⼆、数据双向绑定
双向绑定是Vue最为核⼼的功能。简单理解就是<template>中的⻚⾯数据和<script>中的脚本数据进⾏绑定，其

中任何⼀个数据发⽣了变化，另⼀个数据也随之发⽣变化。

1、vue2语法的双向绑定

<template>

 <div>
 姓名：<input v-model="userName" /> {{ userName }}

数据双向绑定可以说是整个Vue的核⼼。例如，我们可以⽤数据双向绑定实现⼀些更为复杂的表单。

 薪⽔：<input type="number" v-model="salary" /> <button @click="addSalary">薪⽔加
1000</button> {{ salary }}

 </div>
</template>

<script lang="ts">

 export default{
 //数据
 data() {
 return {
 userName:"王⼀",
 salary:15000
 }
 },
 //⽅法
 methods:{
 addSalary(){
 this.salary += 1000
 }
 }
 }

</script>

<style scoped>

</style>

<template>

 <div>
 姓名：<input v-model="userName"/> {{ userName }}

 薪⽔：<input type="number" v-model="salary"/> {{ salary }}

 <button v-on:click="addSalary">提交</button> <button @click="changeUserInfo">查看个⼈信
息</button>
 </div>
 <hr />
 <div class="userInfo" v-if="showUserInfo">
 <h2>个⼈信息</h2>
 年龄：<input type="number" v-model="userInfo.age" />

 性别：<input type="radio" value="1" v-model="userInfo.sex">男<input type="radio"

value="2" v-model="userInfo.sex">⼥

 岗位：<select v-model="userInfo.department">
 <option value="dev">开发</option>

 <option value="test">测试</option>

 <option value="maintain">运维</option>
 </select>

 技术: {{ skill }}

 学习新技术： <input v-model="newSkill" /> <button @click="learnSkill">学习</button>

 个⼈信息汇总：{{ userInfo }}

 </div>
</template>

这样的表单，如果要⽤纯JS实现，就会相当困难。但是，⽤双向绑定就简单很多。

2、OptionsAPI和CompositionAPI
Vue2中常⽤的这种编写⽅式称为OptionsAPI，配置式。其实现⽅式是⽤⼀个统⼀的配置对象来实现全部代码逻

辑。在这个对象中，通过data、methods、computed等配置选项来控制逻辑。

<script lang="ts">

 export default{
 data(){
 return{
 userName:'roy',
 salary:15000,
 userInfo:{
 age:0,
 sex:1,
 skills:['java','vue','python'],
 department:''
 },
 newSkill:'',
 showUserInfo:false
 }
 },
 methods:{
 addSalary(){
 this.salary +=1000
 },
 learnSkill(){
 if(this.newSkill)
 this.userInfo.skills.push(this.newSkill)
 },
 changeUserInfo(){
 this.showUserInfo= !this.showUserInfo
 }
 }
 }

</script>

<style scoped>

.userInfo{

 background-color: bisque;
 width: 80%;
}

.userInfo span{

 background-color: yellow;
 margin-left: 10px;
 border: 1px;
 border-radius: 5px;
}

</style>

OptionsAPI是Vue2时的标准API编写⽅式。Vue3向下兼容了Vue2的API。因此，Vue2的⽼项⽬，在Vue3中基本
可以⽆缝迁移。实际上，OptionsAPI是在CompositionAPI的基础上实现的。关于Vue的基础概念和知识，在这两种API

之间是通⽤的。另外，官⽅建议，如果采⽤Vue构建完整的SPA应⽤，那么更建议使⽤CompositionAPI。

但是，OptionsAPI所有逻辑都混在⼀起，不便于维护和复⽤。 Vue3另外通过了⼀种更⽅便的API，Composition
API，混合式API。

上⾯同样的示例，⽤Composition API的写法如下：

1、setup是Vue3中的⼀个⽣命周期函数，他会在组件加载时执⾏。后⾯会细讲⽣命周期。

2、setup可以返回对象或者函数。如果是⼀个对象，则对象中的属性、⽅法等，可以在模板中直接使⽤(常
⽤)。如果返回⼀个函数，则通过函数的返回值直接渲染⻚⾯，不经过模板。例如 setup(){return ()=>"直
接渲染"}

3、setup是⼀个普通的函数，不能使⽤this。 OptionsAPI中可以通过this访问脚本本身的数据 同时 setup中
不处理this，意味着setup编写可以更灵活，不需要依赖当前⻚⾯上下⽂

4、此时声明的userName， salary等变量不具备双向绑定。Vue3对双向绑定做了重新设计，后⾯会详细分
享。

5、setup有⼀种简写的⽅式<script setup lang="ts">。这样就不需要写函数了，标签内部直接写函数体。在
标签内部声明的对象，函数等，都会直接return出去。项⽬中常⽤

<template>

 <div>
 姓名：<input v-model="userName" /> {{ userName }}

 薪⽔：<input type="number" v-model="salary" /> <button @click="addSalary">薪⽔加
1000</button> {{ salary }}

 </div>
</template>

<script lang="ts">

 export default{
 setup(){
 //现在声明的变量还不具备双向绑定
 let userName="王⼀"
 let salary=15000

 function addSalary(){
 salary += 1000
 console.log("salary = " + salary)
 }
 //模板要⽤哪些，就返回哪些
 return {userName,salary,addSalary}
 }
 }

</script>

<style scoped>

</style>

在CompositionAPI中，由于setup是⼀个不同的函数，不需要处理this。这也意味着setup函数编写可以更加灵
活，不需要依赖当前⻚⾯上下⽂。例如：将示例中的脚本单独写到⼀个ts⽂件中。

然后，在App.vue中就可以直接引⽤脚本

<script setup lang="ts">

//现在声明的变量还不具备双向绑定
let userName="王⼀"
let salary=15000

function addSalary(){

 salary += 1000

 console.log("salary = " + salary)

}

</script>

// MySalary.ts

import { onMounted, ref } from "vue"

export default function(){

 //现在声明的变量还不具备双向绑定。添加ref函数才能具备响应式
 const userName=ref("王⼀")
 const salary=ref(15000)

 function addSalary(){
 salary.value += 1000
 console.log("salary = " + salary.value)
 }

 onMounted(()=>{
 console.log("加载了外部脚本")

 });

 return {userName,salary,addSalary}
}

如果App.vue的逻辑越来越复杂，通过这种⽅式，就更易于将相关的属性和⽅法整理到⼀起，从⽽实现⼀个特定
的业务功能。

1、ref函数让变量具备了双向绑定功能。后⾯详细分析。

2、复杂⻚⾯可以⽤这种⽅式。⼀般情况下，显然是将MySalary的模板和脚本封装到⼀起，这就是⾃定义组
件了。

3、Vue3中的数据双向绑定

3.1 ref定义基础类型响应式数据

语法： let userName=ref(初始值)。

返回值：⼀个RefImpl的实例对象，值被包裹在对象的value属性中。

注意点：

脚本中要⽤ref对象的value属性访问值，例如userName.value。但是模板中可以直接⽤。

ref对象本身不是响应式的，value属性是响应式的。例如js中修改值，要通过userName.value="xxx"，
⽽不能userName="xxx"。

vue-official插件中可以选择⾃动添加value属性。(需要⼿动勾选)

<template>

 <div>
 姓名：<input v-model="userName" /> {{ userName }}

 薪⽔：<input type="number" v-model="salary" /> <button @click="addSalary">薪⽔加
1000</button> {{ salary }}

 </div>
</template>

<script setup lang="ts">

import MySalary from './components/MySalary';

let {userName,salary,addSalary} = MySalary()

</script>

<style scoped>

</style>

<template>

 <div>
 姓名：<input v-model="userName" /> <button @click="changeName">名字后⾯加1</button> {{

userName }}

 薪⽔：<input type="number" v-model="salary" /> <button @click="addSalary">薪⽔加
1000</button> {{ salary }}

 </div>
</template>

<script setup lang="ts">

import { ref } from 'vue';

//基础类型⽤ref声明响应式
let userName=ref("王⼀")
let salary=ref(15000)

3.2 reactive定义对象型响应式数据

语法： let salaryInfo = reactive({userName:"王⼀",salary:15000})

返回值：⼀个Proxy实例对象，具有双向绑定能⼒。

3.3 ref对⽐reactive

function changeName(){

 userName.value += "⼀"
 //userName不是响应式的，userName.value才是响应式的。重新定义userName就⽆法双向绑定
 //userName = ref("王⼀⼀")
}

function addSalary(){

 //脚本中操作数据要加.value

 salary.value += 1000
 //观察salary对象结构
 console.log("salary = " , salary)
}

</script>

<template>

 <div>
 姓名：<input v-model="salaryInfo.userName" /> <button @click="changeName">名字后⾯加
1</button> {{ salaryInfo.userName }}

 薪⽔：<input type="number" v-model="salaryInfo.salary" /> <button @click="addSalary">薪
⽔加1000</button> {{ salaryInfo.salary }}
 </div>
</template>

<script setup lang="ts">

import { reactive } from 'vue';

// 对象类型⽤reactive声明响应式
let salaryInfo = reactive({userName:"王⼀",salary:15000})

function changeName(){

 salaryInfo.userName+="⼀"
}

function addSalary(){

 salaryInfo.salary+=1000
 //观察SalaryInfo对象
 console.log("salaryInfo",salaryInfo)
}

</script>

<style scoped>

</style>

这两者都是⽤来声明响应式数据的。但是也有⼀些需要注意的地⽅。

ref也可以⽤来声明对象型响应式数据。其内部也是使⽤reactive实现。例如下⾯的写法效果是⼀样的

其中salaryInfo.value其实拿到的就是⼀个Reactive对象。

基础类型响应式数据，只能⽤ref声明。对象型响应式数据，ref，reactive都可以。通常⼤对象推荐使⽤
reactive。

对象型响应数据，如果将各个属性拆解出来，是不具备响应式的。如果需要响应式属性，可以使⽤toRefs或者
toRef函数进⾏转换。例如

<script setup lang="ts">

import { ref } from 'vue';

// 对象类型⽤reactive声明响应式
let salaryInfo = ref({userName:"王⼀",salary:15000})

function changeName(){

 salaryInfo.value.userName+="⼀"
}

function addSalary(){

 salaryInfo.value.salary+=1000
 //观察SalaryInfo对象
 console.log("salaryInfo",salaryInfo)
}

</script>

<template>

 <div>
 姓名：<input v-model="name" /> <button @click="changeName">名字后⾯加1</button> {{

name }}

 薪⽔：<input type="number" v-model="money" /> <button @click="addSalary">薪⽔加
1000</button> {{ money }}

 </div>
</template>

<script setup lang="ts">

import { reactive, toRef, toRefs } from 'vue';

// 对象类型⽤reactive声明响应式
let salaryInfo = reactive({userName:"王⼀",salary:15000})
// 拆解出来的属性，是基础数据，不具备响应式
// let name = salaryInfo.userName

// let money = salaryInfo.salary

// toRef将对象的属性转为⼀个响应式数据
let name = toRef(salaryInfo,'userName')

let money = toRef(salaryInfo,'salary')

// 将对象的所有属性⼀起转换成响应式数据
// let {userName,salary} = toRefs(salaryInfo)

function changeName(){

 name.value +="⼀"
 console.log("name",name)
}

3.4 标签的ref属性

在<template>中定义模板时，可以通过ref属性将当前DOM元素绑定给响应式变量。

如果只是针对普通元素，还体现不出Ref的作⽤。如果配合⾃定义组件，则更能体现Ref属性的作⽤。例如，针对
薪⽔信息，可以⾃⼰写⼀个简单组件，把多个输⼊框整合到⼀起。

function addSalary(){

 money.value +=1000
 //观察SalaryInfo对象
 console.log("money",money)
}

</script>

<style scoped>

</style>

<template>

 姓名：<input ref="name" abc="aaaaa"/> <button @click="showRes">分析输⼊框</button>
</template>

<script setup lang="ts">

import { ref } from 'vue';

let name = ref()

function showRes(){

 console.log(name) //RefImpl ref对象
 console.log(name.value) //<input> dom元素
 console.log(name.value.value) //输⼊框的值
 console.log(name.value.getAttribute("abc")) //⾃定义属性的值
}

</script>

<style scoped>

</style>

<!-- ⾃定义的薪⽔信息输⼊组件 -->

<template>

 姓名：<input v-model="userName">

 薪⽔：<input type="number" v-model="salary">
</template>

<script lang="ts">

 //组件名默认是⽂件名。如果不希望⽤⽂件名，也可以⾃定义
 export default {
 name:"SalaryInfo"
 }
</script>

然后，在App.vue中，就可以通过ref属性获取薪⽔输⼊框的值。

3.5⾃定义组件的props属性

上⾯的示例相当于是⼦组件将属性暴露给⽗组件。那如果想要⽗组件给⼦组件赋值呢？这就可以⽤到组件的
props属性。

<script setup lang="ts">

import { ref } from 'vue';

 //响应式数据默认值
 let userName = ref("unknown")
 let salary = ref(1000)
 //对外暴露属性。只有暴露出去，组件外部才能访问
 defineExpose({userName,salary})
</script>

<style></style>

<!-- App.vue -->

<template>

 <MySalaryInfo ref="salaryInfo"/><button @click="showRes">查看薪⽔信息</button>
</template>

<script setup lang="ts">

 //引⼊⼦组件
import MySalaryInfo from '@/components/MySalaryInfo.vue';

import { ref } from 'vue';

 //获取绑定对象
let salaryInfo = ref()

function showRes(){

 console.log(salaryInfo) //RefImpl ref对象
 console.log(salaryInfo.value) //Proxy ⼦组件的响应式数据
 console.log(salaryInfo.value.userName) //输⼊框的值
 console.log(salaryInfo.value.salary)
}

</script>

<style scoped>

</style>

<!-- App.vue -->

<template>

 <MySalaryInfo :salaryInfo="salaryInfo"/>
<button @click="setSalary">修改薪⽔信息
</button>

</template>

<script setup lang="ts">

//引⼊⼦组件
import MySalaryInfo from '@/components/MySalaryInfo.vue';

import { reactive } from 'vue';

此时，在MySalaryInfo组件内，就可以通过defineProps函数，获取属性。

三、VUE3⽣命周期
每个 Vue 组件实例在创建时都需要经历⼀系列的初始化步骤，⽐如设置好数据侦听，编译模板，挂载实例到

DOM，以及在数据改变时更新 DOM。在此过程中，它也会运⾏被称为⽣命周期钩⼦的函数，让开发者有机会在特
定阶段运⾏⾃⼰的代码。

⽣命周期有四个阶段：创建，挂载，更新，销毁。每个阶段有⼀前⼀后两个函数

OptionsAPI的⽣命周期函数：

let salaryInfo = reactive({

 userName:"王⼀",salary:15000
 })

function setSalary(){

 salaryInfo.salary+=1000
 console.log(salaryInfo)
}

</script>

<style scoped>

</style>

<!-- MySalaryInfo.vue -->

<template>

 {{ salaryInfo }}

 <!-- ⽗组件传进来的值，不建议直接⽤，eslint会报红提示 -->

 姓名：<input v-model="salaryInfo.userName">

 薪⽔：<input type="number" v-model="salaryInfo.salary">
</template>

<script lang="ts">

 //组件名默认是⽂件名。如果不希望⽤⽂件名，也可以⾃定义
 export default {
 name:"SalaryInfo"
 }
</script>

<script setup lang="ts">

import type { SalaryInfo } from '@/types/SalaryInfo';

//直接接收，不限定类型
// defineProps(["salaryInfo"])

//接收参数，限定类型
defineProps<{salaryInfo:SalaryInfo}>()

</script>

<style></style>

创建阶段： beforeCreate、 created

挂载阶段： beforeMount、 mounted

更新阶段： beforeUpdate、 updated

销毁阶段： beforeDestroy、 destroyed

CompositionAPI的⽣命周期函数：

创建阶段： setup

挂载阶段： onBeforeMount、 onMounted

更新阶段： onBeforeUpdate、 onUpdated

卸载阶段： onBeforeUnmount、 onUnmounted

示例

<template>

 <div>
 薪⽔：<input type="number" v-model="salary" />

 <button @click="addsum">薪⽔+1000</button>
 </div>
</template>

<!-- vue3写法 -->

<script lang="ts" setup>

 import {
 ref,
 onBeforeMount,
 onMounted,
 onBeforeUpdate,
 onUpdated,
 onBeforeUnmount,
 onUnmounted
 } from 'vue'

 // 数据
 let salary = ref(0)
 // ⽅法
 function addsum() {
 salary.value += 1000
 }

 console.log('setup')
 // ⽣命周期钩⼦
 onBeforeMount(()=>{
 console.log('挂载之前')
 })

 onMounted(()=>{
 console.log('挂载完毕')
 })

 onBeforeUpdate(()=>{
 console.log('更新之前')
 })

四、Vue-Router组件路由机制
Vue项⽬虽然只有index.html⼀个⻚⾯，但是可以通过多路由机制实现多⻚⾯跳转的效果。访问不同链接，展示

不同的⻚⾯内容，形成多⻚⾯的效果。

Vue官⽅提供了Vue-Router组件实现路由管理，官⽹地址：https://router.vuejs.org/zh/ 。该组件可以在创建
Vue项⽬时选择引⼊。如果创建时没有安装，也可以⼿动安装。

vue3要求使⽤router组件最新版本。⽬前最新版本是4

1、基础使⽤
⾸先要在ts脚本中配置router组件。

main.ts

 onUpdated(()=>{
 console.log('更新完毕')
 })

 onBeforeUnmount(()=>{
 console.log('卸载之前')
 })

 onUnmounted(()=>{
 console.log('卸载完毕')
 })

</script>

npm install vue-router@4

import { createApp } from 'vue'

import App from './App.vue'

import { createRouter,createWebHistory } from "vue-router";

import HomePage from "@/pages/Home.vue"

import AboutPage from "@/pages/About.vue"

import NewsPage from "@/pages/News.vue"

//配置路由规则
const routes = [

 { path: '/',redirect: '/home'}, //默认跳转都⾸⻚
 { path: '/home', component: HomePage },
 { path: '/about', component: AboutPage, name:'about' }, //命名路由
 { path: '/news', component: NewsPage },
]

//创建路由器
const router = createRouter({

 history: createWebHistory(),//路由器⼯作模式
 routes,
})

//项⽬中，通常将两个配置项放到单独的ts⽂件中

https://router.vuejs.org/zh/

然后，在Vue模板中，配置跳转链接(<router-link>标签)以及跳转⻚⾯(<router-view>标签)。

App.vue

启动后，点击⻚⾯上⽅的菜单，下⽅内容⻚就会显示相对应的内容。同时注意观察上⽅路径变化。

const app = createApp(App)

//加载路由器
app.use(router)

app.mount('#app')

<template>

 <div id="app">
 <h1>Hello App!</h1>
 <p>
 <!-- 使⽤ router-link 组件进⾏导航 -->
 <!-- 通过传递 `to` 来指定链接 -->
 <!-- `<router-link>` 将呈现⼀个带有正确 `href` 属性的 `<a>` 标签 -->
 <router-link to="/home">⾸⻚</router-link> <!-- 直接跳转 -->
 <router-link :to="{ path:'/about'}">关于</router-link> <!-- 路径跳转 -->

 <router-link replace :to="{ name:'news'}">新闻</router-link> <!-- 命名跳转 -->
 </p>
 <div class="content">
 <!-- 路由出⼝ -->

 <!-- 路由匹配到的组件将渲染在这⾥ -->
 <router-view></router-view>
 </div>
</div>

</template>

<!-- vue3写法 -->

<script lang="ts" setup >

</script>

<style>

 a{
 margin: 10px;
 }

 .content{
 background: yellowgreen;
 widows: 10%;
 height: 400px;
 border: 1cap;
 border-radius: 10px;
 }

</style>

2、路由⼯作模式
在router配置中的history项为路由⼯作模式。Vue提供了两种⼯作模式：

history模式

访问路径：URL不带#，斜杠链接，接近传统⽹站。缺点：容易产⽣404错误。

hash模式

访问路径：URL带有#。缺点：对SEO不太友好。⽐较适合内部系统。

3、replace属性
<route-link>标签可以添加replace属性。有两种可选配置： push和replace

push 追加浏览器历史记录(默认值)。追加历史记录后，可以使⽤浏览器的返回按钮，跳回历史⻚

replace 替换浏览器历史记录。替换历史记录后，浏览器的返回按钮不可⽤。

4、嵌套路由

const router = createRouter({

 history:createWebHistory(), //history模式
 /******/

})

const router = createRouter({

 history:createWebHashHistory(), //hash模式
 /******/

})

<route-view>标签嵌⼊的⻚⾯中⽀持进⼀步嵌套⼦菜单。例如，新闻⻚希望进⼀步嵌套新闻路由。新闻⻚有多条
新闻，希望在新闻⻚展示多条新闻的标题。点击标题，可以查看对应新闻的详情。

⾸先，定义三个新闻对应的详情⻚。每个详情⻚包含简单的内容

并配置到路由规则中

然后，在新闻详情⻚增加嵌套路由

<!-- NewsDetail1.vue -->

<template>

 <p>新闻ID： 1</p>
 <p>新闻标题： 1 </p>

 <p>新闻内容： 1 </p>

</template>

<script lang="ts" setup>

</script>

<style>

</style>

import News1 from "@/pages/NewsDetail1.vue"

import News2 from "@/pages/NewsDetail2.vue"

const routes = [

 { path: '/',redirect: '/home'}, //默认跳转都⾸⻚
 { path: '/home', component: HomePage },
 { path: '/about', component: AboutPage, name:'about' }, //命名路由
 {
 path: '/news',
 component: NewsPage,
 name:'news',
 children:[//⼦路由
 {
 name: "xinwen1",
 path: "1",
 component: News1
 },
 {
 name: "xinwen2",
 path: "2",
 component: News2
 }
] },
]

<template>

 <div class="news">
 <!-- 导航区 -->

这样就实现了新闻⻚内的嵌套路由。点击新闻标题，会跳到对应的新闻详情⻚。

5、路由传参
上⾯的示例显然太呆板，现实的场景当然是希望查出⼀个完整的新闻列表，然后每个新闻⻚都是展示新闻列表中

的内容，⽽不是每个组件内固定的内容。这也就需要进⾏路由传参，也就是NewsDetail中的内容是从新闻列表中传
递进来的。

Vue3中提供了两种传参⽅式，query传参和param传参。

 <RouterLink to="/news/1">新闻1</RouterLink>

 <RouterLink to="/news/2">新闻2</RouterLink>

 <!-- 展示区 -->

 <div class="news-content">
 <RouterView></RouterView>
 </div>
 </div>
</template>

<script setup lang="ts">

</script>

<style scoped>

/* 新闻 */
.news {

 padding: 0 20px;
 display: flex;
 justify-content: space-between;
 height: 100%;
}

.news ul {

 margin-top: 30px;
 list-style: none;
 padding-left: 10px;
}

.news li>a {

 font-size: 18px;
 line-height: 40px;
 text-decoration: none;
 color: #64967E;
 text-shadow: 0 0 1px rgb(0, 84, 0);
}

.news-content {

 width: 90%;
 height: 90%;
 border: 1px solid;
 margin-top: 20px;
 border-radius: 10px;
}

</style>

1、query传参

News.vue传参

NewsDetail.vue接收参数

2、params传参

params传参⽅式表示所有参数都拼接到URL上。

⾸先需要在route配置中预设占位符

然后，传参时，在RouteLink中直接传到预设的URL，或者⽤name属性指定⽬标。

<!-- 字符串传参 -->
<router-link to="/news/1?id=1&title=新闻1&content=asdfasdf"

<!-- 对象传参 -->
<RouterLink

 :to="{
 path:'/news/1',
 query:{
 id:'1',
 title:'新闻1',
 content:'asdfasdf'
 }
 }">
 新闻1
</RouterLink>

import {useRoute} from 'vue-router'

import {toRefs} from 'vue'

const route = useRoute()

// 打印query参数
console.log(route.query)

//配置双向绑定数据
let {query} = toRefs(route)

{

 path: '/news',
 component: NewsPage,
 name:'news',
 children:[//⼦路由
 {
 name: "xinwen2",
 // Param传参，URL预设占位符，?表示参数可选
 path: "2/:id/:title/:content",
 component: News2
 }
] },

接下来NewsDetail2.vue中通过路由的params属性接收参数

五、Pinia集中式状态存储
1、理解状态
在任意Vue⻚⾯之间共享的存储数据。简单理解：在当前Vue项⽬中使⽤的MySQL数据库。例如登录信息，只要

完成了登录，所有Vue⻚⾯都能读取到当前登录⽤户。

Vue2中提供的集中状态存储框架是Vuex，Vue3中新提供了Pinia。如果你使⽤的还是Vue2，那么主要下，Vuex
和Pinia不能⼀起使⽤。

2、创建store
Pinia可以在创建应⽤时选择引⼊。如果创建时没有引⼊，那就需要⼿动引⼊⼀下。

Pinia的使⽤⽅式和Route组件基本相似。需要在启动的ts⽂件中使⽤use函数引⼊。

main.ts

<!-- params传参 -->

<RouterLink to="/news/2/1/新闻2/qowuieoiu">param路径传参</RouterLink>
<!-- params传参 -->

<RouterLink

 :to="{
 name:'xinwen2',
 params:{
 id:2,
 title :'新闻2',
 content :'qowiueoiqu'
 }
 }">
 param对象传参
</RouterLink>

import {useRoute} from 'vue-router'

import {toRefs} from 'vue'

const route = useRoute()

// 打印params参数
console.log(route.params)

//配置双向绑定数据
let {params} = toRefs(route)

npm install pinia

接下来使⽤pinia需要创建Store。⼀个Store可以理解为MySQL中的⼀个库，保存⼀部分数据。Pinia的Store中有
三个概念： state, getter , action。这三个概念也可以类⽐于熟悉的MVC。state相当于是数据；getter相当于是服
务，⽤来获取并返回数据；action相当于是Controller，组织业务逻辑。

创建定义store的⽂件 store/user.ts

store中最为核⼼的就是state，⽽在定义state时，可以利⽤TypeScript的类型定制功能，对复杂数据结构进
⾏规范。例如

import {createPinia} from 'pinia'

//加载pinia
const pinia = createPinia()

app.use(pinia)

import { defineStore } from 'pinia'

export const userStore = defineStore('userStore',{

 //action封装修改state的业务动作
 actions:{
 changeUsername(value:string){
 if(value && value.length<10){
 this.username = value
 }
 }
 },
 //getters读取state的计算值
 getters:{
 getUsername():string{
 return this.username.toUpperCase()
 }
 },
 //state定义要保存的数据结构
 state(){
 return{
 //给定默认值
 username:'--'
 }
 }
})

const useStore = defineStore('storeId', {

state: () => {

return {

// ⽤于初始化空列表
userList: [] as UserInfo[],

// ⽤于尚未加载的数据
user: null as UserInfo | null,

}

},

})

如果你熟悉Java后端开发，有没有觉得接⼝很熟悉？那么接下来，类、抽象类这些呢？也可以尝试尝试。

3、使⽤store操作数据
App.vue中修改stroe的数据

pinia的使⽤⼏乎没有⻔槛，相⽐vuex要简单很多，所以官⽅对Pinia的定义是符合直觉的状态管理库。因
此，在使⽤pinia时，更应该是注意使⽤规范。

4、storeToRefs声明响应式数据
如果需要将store中的数据声明成响应式数据，供Vue的模板使⽤，可以使⽤pinia提供的storeToRefs函数。他和

Vue提供的toRefs函数的区别在于，stroeToRefs只将store中的数据转换成响应式数据。⽽toRefs会将store对象中
很多隐藏的⽅法和属性⻚转换出来。

interface UserInfo {

name: string

age: number

}

<script lang="ts" setup >

//获取store
import { userStore } from "@/store/user";

const user = userStore()

//修改store中的值
//1、直接修改某⼀个state
user.username='roy'

//2、修改完整的state
user.$patch({

 username:'roy2'
})

//3、通过action进⾏修改 推荐⽅式
user.changeUsername('roy')

// 获取store中的数据
console.log(user.username)

// 通过getter获取state数据 推荐⽅式
console.log(user.getUsername)

</script>

<template>

 <div id="app">
 <h1>Hello {{ userInfo.username.value }}</h1>
</div>

</template>

<!-- vue3写法 -->
<script lang="ts" setup >

//获取store
import { userStore } from "@/store/user";

5、store的混合式写法
store也有⼀种混合式的写法，将各种组件混合到⼀起。

在App.vue中，也可以像使⽤普通对象⼀样，使⽤store中的⽅法和对象。

import { storeToRefs } from "pinia";

import { toRefs } from "vue";

const user = userStore()

//storeToRefs转换后只有username和getUsername
let userInfo = storeToRefs(user)

console.log(userInfo)

//toRefs转换后包含了很多隐藏⽅法和属性，⽐如$patch
let userInfo2 = toRefs(user)

console.log(userInfo2)

</script>

<style>

</style>

import { defineStore } from 'pinia'

import { reactive } from 'vue'

export const userStore = defineStore('userStore',()=>{

 //相当于是state
 const userInfo = reactive({username:"---"})
 //相当于action
 function changeUsername(value:string){
 if(value && value.length<10){
 userInfo.username = value
 }
 }
 //相当于getters
 function getUsername():string{
 return userInfo.username.toUpperCase()
 }
 //不⽤区分什么类型，返回出去的就可以⽤
 return {userInfo,changeUsername,getUsername}
})

<template>

 <div id="app">
 <!-- 注意对象拆包过程 -->
 <h1>Hello {{ res.userInfo.value.username }}</h1>
</div>

</template>

<!-- vue3写法 -->
<script lang="ts" setup >

//获取store
import { userStore } from "@/store/user2";

这种⽅式相当于在做MVC开发时，将Controller\Service\Dao这些组件写到⼀起。

复杂项⽬当中，不太建议这样⽤。但是如果别⼈这么⽤了，你要能看懂。

六、快速上⼿Element-Plus
ElementUI是饿了么开源的⼀套基于Vue2的经典UI库。针对Vue3，升级成为了ElementPlus。熟悉ElementPlus

库，不但可以节省⼤量前端项⽬的开发时间，同时也是深⼊了解Vue3复杂组件开发的很好途径。

ElementPlus官⽹地址：https://element-plus.gitee.io/zh-CN/ 。 ⽬前还在迭代更新过程当中。

1、安装ElementPlus

2、引⼊ElementPlus

main.ts

3、使⽤ElementPlus组件 参⻅官⽅⽂档。

import { storeToRefs } from "pinia";

const user = userStore()

//修改store中的值
//通过action进⾏修改 推荐⽅式
user.changeUsername('roy')

// 获取store中的数据
console.log(user.userInfo)

// 通过getter获取state数据 推荐⽅式
console.log(user.getUsername())

//混合式store转成Ref后，只有数据的ref

let res = storeToRefs(user)

console.log(res)

</script>

<style>

</style>

npm install element-plus --save

import { createApp } from 'vue'

import App from './App.vue'

import ElementPlus from 'element-plus'

import 'element-plus/dist/index.css'

const app = createApp(App)

app.use(ElementPlus)

app.mount('#app')

<template>

 <div class="mb-4">
 <el-button>Default</el-button>
 <el-button type="primary">Primary</el-button>
 <el-button type="success">Success</el-button>

https://element-plus.gitee.io/zh-CN/

或者，你也可以直接使⽤element-plus提供的Demo：https://github.com/element-plus/element-plus-vite-start
er 。 ⾥⾯有更多现成的案例。

ElementUI针对Vue2还推出过⼀个vue-admin模版，⾥⾯案例更丰富，集成度也更⾼。很多企业内部项⽬都
可以直接拿来⽤。有兴趣可以了解⼀下。⽽针对Vue3，只推出了⼀个将ElementUI从Vue2升级到Vue3的迁
移⼯具，尚未提供Vue3的版本。

类似的UI框架还有很多，给⼤家例举⼏个常⽤的

Ant Design Vue(https://www.antdv.com/docs/vue/getting-started-cn) 经典⽼框架

Native UI(https://www.naiveui.com/zh-CN/light) 仅⽀持Vue3的⼀个新的UI库

Tdesign(https://tdesign.tencent.com/) 腾讯开源的前端UI框架 包含桌⾯与移动端

NutUI(https://nutui.jd.com/#/) 京东开源的前端UI框架

uvuewui(https://www.uviewui.com/) 适合移动端uni-app开发

 <el-button type="info">Info</el-button>
 <el-button type="warning">Warning</el-button>
 <el-button type="danger">Danger</el-button>
 </div>
</template>

<!-- vue3写法 -->
<script lang="ts" setup >

import { ElButton } from 'element-plus';

</script>

<style>

</style>

https://github.com/element-plus/element-plus-vite-starter
https://www.antdv.com/docs/vue/getting-started-cn
https://www.naiveui.com/zh-CN/light
https://tdesign.tencent.com/
https://nutui.jd.com/#/
https://www.uviewui.com/

	Vue3简介
	一、整体认识Vue3项目
	1、创建Vue3工程
	2、主要工程结构

	二、数据双向绑定
	1、vue2语法的双向绑定
	2、OptionsAPI和CompositionAPI
	3、Vue3中的数据双向绑定
	3.1 ref定义基础类型响应式数据
	3.2 reactive定义对象型响应式数据
	3.3 ref对比reactive
	3.4 标签的ref属性
	3.5自定义组件的props属性

	三、VUE3生命周期
	四、Vue-Router组件路由机制
	1、基础使用
	2、路由工作模式
	3、replace属性
	4、嵌套路由
	5、路由传参

	五、Pinia集中式状态存储
	1、理解状态
	2、创建store
	3、使用store操作数据
	4、storeToRefs声明响应式数据
	5、store的混合式写法

	六、快速上手Element-Plus

